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SOLVENT PEAK REMOVAL IN NMR SPECTRA USING BAYESIAN 
ANALYSIS 
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Abstract 

In this paper we demonstrate the use of Bayesian analysis methods for the 
removal or suppression of solvent peaks from NMR spectra. Typically solvent 
peaks are the dominant feature in the NMR spectrum and often mask or seriously 
overlap smaller resonance from which important information of the molecule under 
study may be obtained. Although applied to NMR spectra, the method is general 
and may be applied to large peak suppression in most spectroscopic techniques. 

INTRODUCTION 

Large peak suppression is a desireable data analysis technique in many forms of 
spectroscopy. In NMR spectroscopy the solvent peak often obscures much 
smaller resonances nearby which are due to the molecule under study. A common 
example is the large water peak obtained from protein NMR in aqueous solvents. 
In Fourier-transform NMR spectroscopy, the signal is acquired in the time-domain 
and the final spectrum is presented by Fourier transformation of the acquired signal 
into the frequency-domain. The large solvent peak obtained in the frequency- 
domain spectrum often makes peak assignment difficult, particularly in the amide 
region of the spectrum. Although several experiment pulse methods have been 
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394 WHITTENBURG 

utilized for solvent peak suppresionn [I],  it is possible that modem data analysis 
methods combined with A D  cunverters with a large dynamic range may provide 
superior large peak suppression. In this paper we present the use of Bayesian 
analysis methods for the suppression of large resonances or peaks in an 
experimentally acquired spectrum. 

THEORY 

Bayes' theorem is 

P(AI 1) x P( BI A ,  I )  
P( BI I )  

P( Al B, I )  = 

where the proposition that A is true given B and any prior information, I, denoted 
by the probability P(AIB.1) is related to the proposition A is true given only the 
prior information, P(AII), the proposition B is true given A and the prior 
information, denoted by P(BIA,J), divided by the probability B is true given the 
prior information, P(BI1). To clanfy the use of Bayes' theorem, particularly in 
application to spectroscopy, let's take A to be a hypothesis, H, that a given 
equation can be used to describe a given set of data, D. The probability P(AIB,I), 
now expressed as P(HID,I) is the best measure of how well the equations "fits" the 
data. In a more conventional approach the equation would be fit to the data, 
usually using a non-linear least-squares algorithm. This is related to the probability 
P(DIH.1). Bayes's theorem demonstrates, as we will see below, how fitting the 

equation to the data can be used to determine how appropriate the equation (or 
model function) is in describing the data. For example, we can "fit" a decaying 
time data set to a decaying exponential and to a gaussian function and obtain two 
different R values, or goodness of fits. Bayes' theorem can be used to determine 
which model is the correct choice. Note that the goodness of fit is not a sufficient 
criterion. Bayes' theorem, as applied below, also may be used to determine an 
optimum set of parameters in an equation being used to fit a given data set. Such a 
set of parameters would optimize P(DIH,I) and, therefore, P(HID,I). In applying 
Bayes' theorem in this manner the method begins to approach non-linear least- 
squares fitting of the data. The adjustable parameters in the model function, the 
equation used to describe the data, are optimized until the maximal value in 
P(HID,I) is located. These values are taken to be the "correct" values. There are 
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two distinct advantages of Bayesian analysis over conventional non-linear least- 
squares; prior information, I, such as ranges of allowed values of parameters may 
be incorporated into the model in a more natural way and some of the parameters, 
called nuisance parameters, may be removed from the probability before the fitting 
procedure is applied. To date, no one has investigated spectroscopic application 
of Bayes theorem employing prior information and it is not included in this work. 
The removal of nuisance parameters will be discussed below. To summarize, 
Bayes theorem may be viewed as a method of "fitting" an equation to a data set in 
which several of the parameters may be eliminated from the equation before it is fit 
to the data. 

To relate this more directly to spectroscopy, consider a general time- 
domain function, f(t), define as 

where Gj is some function of time which depends parametrically on a set of 
frequencies. Perhaps it is a set of decaying sine or cosine functions each of which 
is composed of several frequencies. Each of these cosine functions has an 
amplitude, Bj. f(t) is thus a set of model functions which may described the 
experimental data, D. Bayes theorem can then be used to determine the 
probability that the model functions, which may contain adjustable parameters, 
correctly describe the experimental data 

One advantage of the Bayesian formulation is that linear parameters in the 
probability may be removed by marginalization, that is, the parameter-dependence 
may be integrated out of the probability. This marginalization is the approach used 
to remove unecessary parameters as discussed above. In the model functions 
typically used in NMR analysis, decaying cosine functions, the amplitude may be 

marginalized so that only the frequency of each resonance and its associated decay 
rate remain. These two parameters, unlike the amplitude, are not strongly 
correlated so that non-linear least-squares adjustment of the parameters to 
optimize the probability now become feasible, even for complicated spectra. 
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396 WHITTENBURG 

It has previously been shown that marginalization of the amplitude leads to 
the following expression for the probability [2] 

where m is the number of model functions, N is the number of data points, w and a 
are the frequency and decay rate of each peak in the NMR spectrum, h' is the 
sufficient statistic, defined by 

t m  

where hij is the projection of the orthogonalized model function onto the data and 
d' is given by 

where the orthogonalized model functions are obtained by forming the matrix, gu, 
of all possible products Gi * Gj of the model functions given in eq. 2 and obtaining 
the eigenvectors of this matrix. 

To make these points clearer we now describe the method of applying 
these equations. The Bayesian method is a non-linear least-squares optimization of 
the probability, given by eq. 4, where the frequency and decay rate of each model 
function, i.e. peak in the spectrum, is adjusted. For a given set of frequency and 
decay rates the current estimate of the model function is obtained from eq. 2.  The 
model function is then "projected" onto the experimental data to compute the 
sufficient statistic, h2, using eq. 5. This projection is accomplished as one would 
project two 'Jectors to produce a scalar quantity. For each point in the data a sum 
of the product of the orthogonal model function times the data point is computed. 
The more closley the orthogonal model function "fits" the data the larger this 
projection becomes resulting in a larger sufficient statistic. The sum-square of the 
data points is computed via eq. 6 and, finally, the probability is computed using eq. 
4. The frequency and decay rates are adjusted by a suitable algorithm until the 
probability is maximized. The values of the parameters that maximize the 
probability are then assumed to be the "correct" or best values. 
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Note that the amplitudes are not included in the orthogonal model 
functions. They are nuisance parameters and have been marginalized out. The 
marginalized parameters, in this case the amplitude of each resonance, may be 
obtained from the final finals of the estimated parameters. We have previously 
shown that the Bayesian method provides reliable estimates of frequencies, decay 
rates and amplitudes of peaks within complicated NMR spectra [3]. 

With these estimations of the parameters of the model functions which 
describe the experimental data, we can expect to remove or suppress large peaks in 
the data as they make the major contribution to the experimental FID. That is, we 
can assume as our model a single model function, i.e. one resonance, which would 
then provide estimates of the contribution of the largest peak to the experimental 
spectrum. We than subtract this decaying sinusoid from the experimental FID and 
anticipate that the FFT of the residual FID reasonably approximates the frequency- 
domain spectrum with the largest peak removed. Below we provide an application 
to synthetic data and then to experimental data and discuss current limitations of 
the procedure. 

RESULTS AND DISCUSSION 

To test and to display the potential of the method we have generated a synthetic 
data set similar to one that would be acquired on a conventional FFT-NMR 
instrument. The data set is generated in the time-domain, Fig 1B with three 
resonances or peaks. The frequencies of the three resonances are 10,20 and 30Hz in 
a 1: 100000: 1 ratio of amplitudes. In other words, the amplitude of the middle peak is 
100000 times that of the two peaks on either side. White noise with a relative 
amplitude of 1% (relative to the smaller resonances) is added to the data set. The FID 
appears to be a single decaying sinusoid, while the FFT displays what appears to be a 
single peak at 20Hz, Fig 1A. Using the method outlined above a single model function 
is estimated from the data set and subtracted from the time-domain signal. The 
residual FID is shown in Fig. 1D. The 
clearly showing the two smaller resonances. 

experimentally acquired data. It is important to demonstrate such data analysis and 
extraction methods on experimental data as methods such a Bayesian analysis rely on 
model functions to describe the experimental data. Synthetic data which is generated 

of the residual FID is shown in Fig. 1C 

With this demonstation of the technique we now apply the method to 
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Fig. 1. Example of large peak suppression from a synthetic data set. 

using these model functions always leads to remarkable demonstrations of the 
applicability of the method. An experimental NMR spectrum of a derivatized 
cyclodextran compound is shown below. The spectrum was acquired on a Varian 400 

Unity FT-NMR spectrometer. In Fig. 2 we show the FFT of the resulting time- 
domain data (not referenced). The region near the solvent peak is shown on an 
expanded scale while the insert displays the full spectrum acquired over the 
experimental spectral range. 

Following the procedure described above we performed a full Bayesian analysis 
on the above time-domain data with a single model function The analysis took 20s 
on a 5K data set on a SUN Model 2 workstation. Using the final optimized values 
of the parameters the large resonance is subtracted from the experimental FID. 
The resulting FFT spectrum is  shown below. The region near the solvent peak is 
shown on an expanded scale. 
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Fig. 2. Experimental FFT spectrum of a derivatized cyclodextran compound. 
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Fig. 3. Experimental FET spectrum of the above spectrum with suppression of the 
solvent peak. 
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Looking first at the FFT spectrum prior to solvent suppression we notice two 
small features in the spectum near the solvent peak at approximately 1210 Hz and 
1260 Hz, plus a shoulder on the high-frequency side of the solvent peak. Now looking 
at Fig 3., with the solvent peak removed. We note that the two peaks at 1210 and 
1260 Hz, respectively are clearly visible in the residual spectrum and that the shoulder 
peak has been baseline resolved from the solvent peak. The current limitation of the 
method is evident in the rapid oscillations in the residual spectrum centered at the 
solvent peak frequency. These oscillations result from the fact that imperfect 
shimming of the NMR magnetic field has led to non-lorentzian lineshapes and 
therefore non-exponential decay of the experimental FID. Our simple model 
functions, therefore, do not correctly described the experimental FID. A much 
"cleaner" removal of the solvent peak may be accomplished once a 
more realistic model function incorporating imperfect shimming is used. The above 
synthetic and experimental applications of the method demonstrate both the 
potential of the method in addition to deficiences that should be addressed in 
future research in this area. 
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